Rei

controlador

Compre el controlador Rei PRO-WiFi

Nueva versión optimizada para instalaciones pequeñas/medianas.

Ahora puede controlar todo tipo de rastreadores solares. Eje doble/simple, inclinado o giratorio. ¡Simplemente cambie el parámetro! Acabamos de lanzar el mejor ALGORITMO de controlador del mundo.

Parámetros de configuración

Controlador óptico.

  • V1 - Accuracy - [Predeterminado: 0.1] la precisión con la que el rastreador compara las lecturas del sensor solar.
  • V2 - Wind Treshold - [Predeterminado: 0.9] voltaje al que el rastreador pasa a la posición segura - detección de viento fuerte.
  • V3 - Sun Treshold - [Predeterminado: 0.8] voltaje al que el rastreador comienza a rastrear la posición del sol
  • V4 - Cloud Treshold - [Predeterminado: 1.65] voltaje al que el rastreador ralentiza el seguimiento del sol - detección de nubes
  • TX - EW intermission - [Predeterminado: 15] tiempo (s) para pasar entre lecturas sucesivas de la señal del sensor de luz E / W
  • TY - SN intermission - [Predeterminado: 45] tiempo (s) para pasar entre lecturas sucesivas de la señal del sensor de luz N / S
  • T1 - Sun Recovery - [Predeterminado: 5000] tiempo (s) que el rastreador espera la luz después de un sombreado parcial / temporal
  • T2 - Wind/Snow Lock time - [Predeterminado: 600] tiempo que el rastreador permanece en una posición segura después de detectar viento fuerte (V2)
  • T3 - New day go E - [Predeterminado: 400] tiempo (s) para que el rastreador vaya al este después de que termine el día
  • T4 - New day go W - [Predeterminado: 0] tiempo (s) para que el rastreador vaya al oeste después de que termine el día
  • T5 - New day go S - [Predeterminado: 0] tiempo (s) para que el rastreador vaya al sur después de que termine el día
  • T6 - New day go N - [Predeterminado: 400] tiempo (s) para que el rastreador vaya al norte después de que termine el día
  • T7 - depends on TRCv parameter[ default: -> Sun low waiting ]
    • If TRCv == 3 Sun low waiting - time the tracker stays idle after the end of the day. (after this time, the tracker moves to the beginning of the day position - successively via (T1 and T3-T6).
    • Tf TRCv == 4 Wind Lock go E - time (s) for the tracker to go East when a strong wind is detected
  • T8 - depends on TRCv parameter [ default: -> Wind Security ]
    • If TRCv << 3 Single axis/tilted tracker only) -> the time (s) for "flat procedure" when a strong wind is detected
    • If TRCv == 4 Wind Lock go W - [default:400] time (s) for the tracker to go West when a strong wind is detected
  • T9 - Wind Lock go S - [default:0] time (s) for the tracker to go South when a strong wind is detected
  • T10 - Wind Lock go N - [default:400] time (s) for the tracker to go North when a strong wind is detected
  • T11 - Pump adv./delay - [default:400] time (s) for the hydraulic pump advance/delay in case it is used/needed
  • TRCv: - (0 - 6) type of the tracker construction - [default:3] - Dual axis Rotary Tracker
    • 0 -> 1x single axis
    • 1 -> 2x single axis
    • 2 -> Dual Tilted SR- tilting in S-N axis, tilting in E-W axis, dedicated wind proce
    • 3 -> Dual Rotary TR - tilting in S-N axis, rotate in E-W axis
    • 4 -> Dual UNIVERSAL - universal wind procedure
    • 5 -> Dual CPV/HYBRID - Concentrated Photovoltaics dedicated end of the day procedure South hemisphere
    • 6 -> Dual CPV/SIMPLE - Concentrated Photovoltaics dedicated end of the day procedure North hemisphere
  • DRV: - (0 - 7) type of motors used in the tracker - [default:3] DC internal driver without soft start.
    • 0 -> DC Soft ++ Lim - DC motor, soft start ON, limit position sesors Normally CLOSED
    • 1 -> DC Soft -- Lim - DC motor, soft start ON , limit position sesors Normally OPEN
    • 2 -> DC Hard ++ Lim - DC motor, soft start OFF, limit position sesors Normally CLOSED
    • 3 -> DC Hard -- Lim - DC motor, soft start OFF, limit position sesors Normally OPEN
    • 4 -> BLDC DRV ++Lim - BLDC motor driver, limit position sesors Normally CLOSED
    • 5 -> BLDC DRV --Lim - BLDC motor driver, limit position sesors Normally OPEN
    • 6 -> Ext+ DRV ++Lim - Univesal/ANY external motor dirver, limit position sesors Normally CLOSED
    • 7 -> Ext+ DRV --Lim - Univesal/ANY external motor dirver, limit position sesors Normally OPEN
  • git
  • PWM1 - EW max speed - (120 -250) [default:250] max speed for E - W motor
  • PWM2 - SN max speed - (120 -250) [default:250] max speed for S - N motor
  • ALim - (0 - 3) [default:0]- Amper lim. off - off/on amperage control Max / Min or separate.
    • 0 -> Amper lim. off - amperage treshold off
    • 1 -> MAX Amper lim. - only amperage MAXIMUM treshold
    • 2 -> MIN MAX Am lim - MINIMUM and MAXIMUM amperage treshold active
    • 3 -> MIN Amper lim. - only amperage MINIMUM treshold
  • AEW1 - MAX Amper EW - (0-250) [default:175][scale: 25 ~ 1A] max amperage for E - W motor
  • ASN1 - MAX Amper SN - (0-250) [default:175][scale: 25 ~ 1A] max amperage for S - N motor
  • UART - (0-3) [default:0] UART port off - communitation betwean embedded driver and WiFi module
    • 0 -> UART port off - comunication off
    • 1 -> UART port on - WiFi remote control on
    • 2 -> REI Watchdog ON - internall selfdiagnostic watchdog
    • 3 -> REI LOG Send/WD - send logs to external server
  • !EXT - (0-4) [default:0] EXT sens off - external sensor function [default == "0"]
    • 0 -> EXT sens off - external sensor off
    • 1 -> PWR sens +++ AC power sensor Normally CLOSED
    • 2 -> PWE sens --- AC power sensor napięcia Normally OPEN
    • 3 -> SNOW sens +++ SNOW sensor Normally CLOSED
    • 4 -> SNOW sens --- SNOW sensor Normally OPEN
  • V5 - Board Temp limit -(0-250) [default:175 ~60 deg.C][scale: 3 ~ 1 degree Celsius] mainboard max temperature [if 0 then off]
  • DIG - Digital Wind pps - (5-250) [default:11] puls/sec. digital anemometer wind treshold
  • AEW2 - MIN Amper EW - (0-250) [default:1][scale: 25 ~ 1A] minimal amperage for E - W motor [for diagnostics]
  • ASN2 - MIN Amper SN - (0-250) [default:1][scale: 25 ~ 1A] minimal apmerage for S - N motor [for diagnostics]

No quieres leer Todo

Mejor / Más barato

Resumamos al principio; Podemos elegir entre controladores ópticos, astronómicos e híbridos. Optical tiene la mejor relación calidad-precio, aunque a algunas personas no les gusta por ser demasiado "diligente". Astronomical es bastante caro y, desafortunadamente, rastrea el sol en lugar de la radiación. REI HYBRID Solar Tracker es el más preciso y eficiente, pero no tanto como para que su precio sea razonable. Además, tanto Astronomical como Hybrid requieren que el magnetómetro se calibre después de cada corte de energía, un desastre.

El costo de comprar el controlador (excluidos los controladores con relés);

Óptico vs astronómico

  • Controlador óptico REI:
    ~ 250 USD
  • Controlador astronómico
    ~ 450 USD
  • Controlador REI HYBRID
    ~ 550 USD

Diferencia Astro / Óptica: 200 USD

Diferencia Híbrido / Óptica: 300 USD

técnico revisión

Controlador inteligente

Solar Tracker sin un controlador seleccionado correctamente es solo una construcción. Se necesita un buen controlador para lograr el objetivo de eficiencia. En la etapa de prueba o investigación, se pueden omitir muchos aspectos importantes que afectan la forma en que funciona todo el conjunto o su seguridad. Al probar varias soluciones a lo largo de los años, hemos logrado romper muchos elementos e incluso derribar todo el rastreador. Intentaremos compartir nuestras experiencias con usted.

Filosofía anterior

Rompiendo los estereotipos

Es hora de interrumpir la división artificial de los controladores para aquellos que operan en sistemas cerrados y abiertos. Esta división resulta de la asignación de ciertos precursores de soluciones particulares a la tecnología, lo que provoca además un estancamiento en el desarrollo de los controladores. En el mercado actual, solo hay algunos productos que brindan resultados satisfactorios en las pruebas. Todas las soluciones restantes se centran principalmente en cuestiones teóricas y no en el aspecto constructivo para las necesidades del mercado.

Al utilizar la nomenclatura desarrollada, los sistemas cerrados funcionarán bien en las regiones tropicales con una ocurrencia insignificante de nubosidad - solo en lugares donde las estaciones lluviosas o cualquier otro cambio climático en el entorno entre las estaciones son mínimos. Los sistemas de circuito abierto, en forma de algoritmo puro, podrán resolver problemas de irradiación inestable, sin embargo, su utilidad es más bien de laboratorio.

La visión de REI asume un diseño de un controlador que excede el nivel actual de la tecnología, un controlador que realiza con éxito un concepto de sistema híbrido y que al mismo tiempo es totalmente configurable y manejable. Un controlador que deja la elección al usuario. Eliminamos las restricciones producidas por un división convencional resultante de una lógica operativa codificada de manera inflexible.

REI Driver abre posibilidades ilimitadas, gracias al uso de plataformas IoT eficientes, que permiten cambiar la implementación de algoritmos primarios y secundarios de manera relativamente fácil, por lo tanto, controlar el comportamiento de todo el sistema.

Al complementar los cálculos del algoritmo con transformaciones de datos en curso de sensores y un número ilimitado de periféricos, es posible ejecutar la autocalibración del sistema incluso en las condiciones de campo más duras.

Abrimos el camino para facilitar la recopilación de datos para futuras investigaciones. Permitimos una corrección mutua del funcionamiento de los racks cooperantes en una configuración maestro-esclavo. Por lo tanto, creamos una oportunidad para utilizar el aprendizaje automático o la inteligencia artificial para aplicaciones más sofisticadas

Mejoras continuas en

Controlador solar inteligente

  • No susceptibilidad a cubiertas de nubes pequeñas, frecuentes y de corta duración, lo que proporciona una extensión mínima del funcionamiento del motor requerida en el proceso de seguimiento.
  • Flexibilidad en la configuración de los tipos de motor, un usuario puede elegir entre: motores paso a paso (controlados directamente o con un controlador dedicado), Motores BLDC o motores de CC (con codificador de una o dos fases o sin él).
  • Plataforma de control configurable para engranajes, que brinda la posibilidad de usar un controlador para cualquier tipo de rack, independientemente de su diseño y ubicación.
  • Posibilidad de recopilar y analizar datos en archivos CSV, hojas xls / google, archivos de base de datos o plataforma IoT dedicada.
  • Capacidades ilimitadas de desarrollo rápido de lógica de software para adaptarse a las necesidades específicas de la ubicación.
  • Una interfaz WWW moderna, con un paquete de consejos que se muestran en el proceso de configuración de los parámetros base del dispositivo.

Óptima Solución

Razonable y efectivo

Es bueno saber cuáles son

  • Possibility to gather and analyze data in CSV file, xls/google sheets, database file or dedicated IoT platform.
  • Unlimited capabilities of fast development of software logic in order to adjust to specific location needs.
  • A modern WWW interface, with a package of tips displayed in the process of configuration of base parameters of the device.
  • Optimal Solution

    Reasonable and effective

    It's good to know what my options are, but most of all to have a choice. If I decide to build a solar tracker for my own needs. Do I have to invest in a great solution that requires internet access, a data collection server, artificial intelligence and many other elements. Of course not. Let's think about what we will need for the tracker to do "the job" and his "mistakes" and awkwardness will not cause us significant loss in tracker performance.

    Minimal requirements

    Reasonable controller.

    • Possibility to connect an AC or DC motor with a power of about 100 - 140W directly to the controller.
    • The possibility of following the sun partially covered by clouds (and if it gets lost, stop it).
    • Taking into account the influence of medium and heavy cloud cover on the direction of light incidence. (clouds are drops of water and act like a prism - the position of the sun and the angle of the light are 2 different things.)
    • Possibility of connecting limit switch in each direction - it may turn out that the structure or neighboring objects will limit us in movements.
    • Wind force detection - we won't run the tracker without it! Sooner or later the wind will be strong enough that the only solution is to lay the work surface flat.
    • Simple display and few buttons for easy configuration.

    Astronomical tracker

    or optical?

    Exactly: The division of trackers into astronomical and optical was not brought up by accident. The one mentioned earlier (open / closed system) is, so to speak; "Off the topic." As a recent tracker owner, I will focus on its accuracy. This means that none of the listed ones will meet my expectations. ... what is the accuracy, after all, tracking is about performance, not accuracy. I will explain this using the example of disadvantages. From a performance perspective - not a sun position, but the direction of the radiation does matter. (look at this photo)

    Astronomical controller - disadvantages.

    A solution that calculates the position of the sun on the basis of geographic coordinates and time:

    • No matter what the weather is like - I always look towards the sun
      It only makes sense in perfect weather.
    • Compass (magnetometer) and Tilt sensor (inclinometer) allow you to determine the actual position of the tracker.
      Stay away from any magnetic field deviation (impossible)
    Optical controller - disadvantages.

    A solution which, based on light sensors, determines the angle of incidence of the sun's rays:

    • No matter where the sun is - I always look at the radiation
      It only makes sense in stable weather.
    • Additional parameters allow you to distinguish day from night and return to the starting position at the end of the day.
      It only makes sense if the tracker has limiters

    The Astronomical Controller - Ad.1 works well only in perfect weather, the position of the sun is consistent with the angle of incidence of the light radiation. It works very badly if we are partially cloudy (thin layer of high clouds). While the azimuth is quite often consistent with the direction of the light, then the elevation of the sun has nothing to do with the angle at which the light falls on cloudy days. When this happens - early spring, 1/2 summer, autumn. So the astronomical driver in our climate, will work well only for 1/2 of the year and single days of spring, the other days of the year it looks towards the sun - not where it needs to be. As for point 2, we tested many magnetometers and inclinometers that play a very important role for the controller - without them, the controller does not know how actually the tracker is set. It turns out that it's either expensive or not accurate at all. Devices need to be properly calibrated and still "afraid" of any changes in the magnetic field. Power lines, steel structures, warehouses, a magnet in a pocket will cause the so-called "ironing" or de-calibration of the device - the sun positioning will be incorrect. The controller will set the structure with slight inaccurracy even on those long-awaited sunny days with clear skies, the tracker will not be as effective as it should be.

    Optical Control - Ad.1 Only works well when the weather is stable. What I mean? the point is that the direction of the light changes depending on cloud density. When we have days with high volatility, e.g. every hour the clouds change their thickness, the driver has to work hard. Sometimes he even rushes to that position that it was unable to find the direction of the light. This happens around 1/3 spring and 1/3 autumn. The solution to the problem is adding parameters (light force, displacement times) so as to reduce the sensitivity to variability. However, this in most cases forces us to use limiter switches (mainly E - W) so that the tracker would not be able to twist so much that the light fell directly on his back.

    Summarizing; both solutions have disadvantages. We checked the impact of these disadvantages on the efficiency of the installation for 3 years. It turns out that the simplicity and low purchase costs of optical driver do not detract its quality of work. The installation working under its control is 5-7% more efficient per year than an installation based on an astronomical driver, even with an expensive magnetometer and inclinometer.

    Or maybe Hybrid

    The best but not the cheapest

    REI HYBRID Solar Tracker. Solution with light sensors, implemented astronomical algorithm, magnetometer and limiters (ampere and physical) is by far the best. We produce such solutions with dedication to the most demanding. Compared to Astronomical controller, we obtain 10% more energy per year, compared to the optical one, about 3-4% Is that a lot? To explore this, a new article must be written. The REI HYBRID controller costs approx. USD550. (in the basic version)

    The cost of purchasing controller;

    Optical vs astronomical

    • Optical controller:
      ~ 250 USD
    • Astronomical controller
      ~ 450 USD

    Difference: 200 USD

    Anemometer or wind force sensor?

    The best but not expensive

    The wind force sensor is a very necessary element - do not leave the tracker turned on without it. The day will certainly come when the tracker will become a wind collector like a sail. BUT ATTENTION - without exaggeration you do not need an accurate anemometer, only a sensor that will generate an impulse to the controller at a given wind force. Very often I see professional devices that unnecessarily increase costs. After all, this is only an indicator that is supposed to act as a threshold and not serve as a weather station.

    Controller

    leads and periphery.

    Because it's always about cost, and believe it or not, housings often cost more than electronics alone (if you don't take software into account). All drivers look the same and have the same pinout. Differences are inside. Mostly the type of processors used. They have additional modules (PCBs, power supply, passive components, peripherals). We have not been able to keep the same derivation for 240V AC motors. AC 240V has higher voltages and we had to take care of insulation. Nevertheless, the housings themselves will always be the same, so one day we will order a mold for an injection molding machine and especially for you and for the "cause" we will lower the production costs. *** If you want your driver to look different than one or another using such 3D printed - for a fee, we can design and print everything for you.

    The upper side of the controller has a fuse and terminals for sensors, wind and light. The light sensor is made of small photovoltaic cells and not diodes / photoresistors. Photoresistors are sensitive to different wavelengths of light than a photovoltaic panel, therefore, although the diode is cheaper, photovoltaic cells provide better results. Connection according to the colors.

    The wind force sensor is a simple DC element that generates a voltage appropriate to the wind force, thanks to which the controller will perform the adjustment procedure in the event of appropriate signal. Green connection is "- minus", red is "Signal" *** Other linear anemometers can be used. Configuration allows you to change the procedure activation threshold.

    The lower side of the controller has terminals for power supply, outputs for DC motors, and outputs for movement limiters (limit). We connect a DC power supply not smaller than 15A to the power supply. We connect motors not larger than 140W to the motor outputs. As limiters, we use the cheapest two-wire "NO" magnetic reed switches (eg from the alarm system). So that one wire from all reed switches is connected to "COM", while the other wire of individual reed switches is connected to individual outputs N, S, W, E .

    REI Solar Tracker Controller have implemented logical limit switches noise-resistant and lets You manage construction in safe way. In that way You can really stop supply power to motors. You can also control any type of motors by external drives. Even more. You can control DC and BLDC/stepper or AC motor at the same time. Imagine some construction where in one function You are using linear actuator and to other direction You need AC 3 phase motor. Rei Controller lets You do that. See example schema bellow.

    The optical driver is configurable with six buttons. To control the tracker manually press the "M" button for 1s To enter the configuration menu, press the "M" button for 5 seconds. To return to the automatic operation of the system (save the settings) press the "C" button.